Fuzzy Logic

Control Systems

During the past decade, fuzzy logic control (FLC), initiated by 'the plonee.nfrlljgl; workfof

Mamdani and Assilian [1975], has emerged as one of thg most active and fm}t areas qr

research in the application of fuzzy set theory, fuzzy loglc,.and fu'zzy reasoning. Its apPh.

cation ranges from industrial process control to medical diagnosis and SCFUI’HICS t{tadm.g.

Many industrial and consumer products using this technology have been buﬂt,.espec:lally in

Tapan where FLC has achieved considerable success. In contrast to conventional contrql:: |

techniques, FLC is best utilized in complex ill-defined processes thgt can be c:ontrolled by

a skilled human operator without much knowledge of their underlying dynamucs.

h The basic idea behind FLC is to incorporate the “expert experience” of a human oper-

l"t; ator in the design of the controller in controlling a process whose input-output relationship

:“‘ is described by a collection of fuzzy control rules (e.g., IF-THEN rules) invoiving linguis.-

. tic variables rather than a complicated dynamic model. This utilization of linguistic var-

| ables, fuzzy control rules, and approximate reasoning provides a means to incorporat
! human expert experience in designing the controller.

In this chapter, we shall introduce the basic architecture, the design methodology, and

the stability analysis of fuzzy logic controllers. Some practical application examples will also

be discussed. We will find that FLC is strongly based on the concepts of fuzzy sets and relx

tigns, linguistic variables, and approximate reasoning introduced in the previous chapters.

.1 BASIC STRUCTURE AND OPERATION OF FUZZY LOG!C

CONTROL SYSTEMS

The typical architecture of a FLC is shown in Fig. 7.1, which is comprised of four principal
components: a fuzzifier, a fuzzy rule base, an inference engine, and a defuzzifier, If the out
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Figure 7.1 Basic architecture of a fuzzy logic controller (FLC).

put from the defuzzifier is not a control action for a plant, then the system is a fuzzy logic
decision system. The fuzzifier has the effect of transforming crisp measured data (e.g.,
spéed is 10 miles per hour) into suitable linguistic values (i.e., fuzzy sets, for example,
speed is too slow). The fuzzy rule base stores the empirical knowledge of the operation of
the process of the domain experts. The inference engine is the kemel of a FLC, and it has
thc capability of simulating human decision méikino" by performinv approximate rf:asonint7

or control action from an inferred fuzzy control action by the inference engine. More details
about the operations of these components are described in the following sections.

f.lj Input-Output Spaces

The purpose of fuzzy logic controllers is to compute. values of control (or action) variables

from the observation or measurement of state variables of the controlled process. such that
a désired Syster performance is acmeved Thus a proper choice giprocess state vana?es;
and control variables i3 “essential to characterization of the operation of a fuzzy logic con-
trol syStEnT (FICST4d 1ias a substandal effect on the performance of a FL.C. Expert expe-
rience and engineering knowledge play an important role during this state variables and
control variables selection process. Typically, the input variables in a FLC are the state,

state error, state error derivative, state error integral, and so on. Following the definition of
linguistic variables, the i input vector X which includes the input state linguistic variables x,

and the output state vector y which includes the output state (or control) linguistic vmables

¥;inFig. 7.1 can be defined, respectively, as
X ={(X,', Ui’ {T] T2 } {l'l‘r‘ l*l‘r, 2] l‘Liz}) li=l,...,n}’ (71)

(Vi 75 T3 T"}{uh o Pyt e (72)

y’

Where the input linguistic variables x; form a fuzzy input space U= U; X U, X - -_><. U,
and the output linguistic vmablcm form a fuzzy output space V.=V, X Vy X--- X V.
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FromEgs. (7.1) and (7.2), we observe that an input linguistic variable x;in auniverse of dl_s.j
cours Uy is characterized by Te) ={T3, T3, Ti} and () = il 2o i
where T(x)) is the term set of x;, that is, the set of names of linguistic values of x; with each_;a
value T4 being a fuzzy number with membership function i defined on U So p(x)isa
semantic rule for associating each value with its meaning. For example, if ; indicates
speed, then T(x;) ={ T.]r,,» Tfi, Til,} may be “Slow,” “Medium,” and “Fast.” Similarly, an out-
put linguistic variable ¥ is sssociated with a term set T(3) = (T}, ... T}} and
B ()“')f_{ LL;,a LLVN p',} The size (or cardinality) of a term set IT(.\',}) =1, is called the
fuzzy partition of x,. The fazzy partition determines the eranularity of the contrel cbtainable
from a FLC. Figure 7.2(a) depicts two fuzzy partitions in the same normalized universe
[-1,+1]. For a‘two-input FLC, the fuzzy input space Is divided into many overlapping
grids [see Fig. 7.2(b)). Furthermore, the fuzzy partitions in a fuzzy input space determine
the maximum number of fuzzy control rules in a FLCS. For example, in the case of a two-
input-one-output fuzzy logic control systern. if|T(x)| = 3 and |T(xp)| = 7. then the maxi
mum number of fuzzy control rules is |T(x,)| X| T(xp)| = 21. The input membership
functions p.f,_,k= 1,2.....k, and the output membership functions uﬁ.‘.. I=1.2....1,
used in a FLC are usualiy parametric functions such as triangular functions. trapezoidal
functions, and bell-shaped functions. Trian oular functions and the trapezoidal functions cag

be represented by L-R fuzzy numbers, while bell-shaped membership functions can be
defined as '

SOy

- (x—m)

) ILy, (x) = €XPp (——2?1“— ) (13)
Y

where mgj%lﬁd o, specify the mean Jocation and the width of the bell-shaped function, respec-

tively. Proper fuzzy partitioning of input and output spaces and a correct choice of member-

ship functions play an essential role in achieving a successful FLC design. Unfortunately,

they are not deterministic and have no unique solutions. Traditionally, a heuristic trial-and-

error procedure is usually used to determine an optimal fuzzy partition. Furthermore, the

choice of input and output membership functions is based on sibjective decisicn criterit
and relies heavily on time-consuming trial and error. A promising approach to automating
and speeding up these design choices is to provide a FLC with the ability to learn its inpul
and output membership functions and the fuzzy control rules. This will be explored later it

Part 111 of this book (see Chap. 19).

I

(a) é (b)

Figure 7.2 Diagrammatic represéhtation of a fuzzy partition. (a) Coarse fuzzy partition
with three terms: N, negative; ZE, zero; P, positive. (b) Finer fuzzy partition with seven
terms: NB, n;gati\'c big; NM, negative medium; NS, negative small; ZE, zero; PS, positive
small; PM, posiﬂve medium; PB, positive big.

0 o
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1.2 Fuzzifier

Feo e oo whish s a subjective valuation to trang-
A fuzzifier performs the function of fU.Z_Z'I.ﬁ'_CBIl_.O_U “h'Chll 5 d ;; ;ZJ_; " o be defined 4
form measurement data into valuation of a subject[ne value. o e’cjﬁed putuniverse of
mapbiﬁg from an observed input space ‘[0 labels gf;uzzy setsf1{1 i q}; eory fuzzification s
discourse. Since the data manipulation in a FLC is based on uzzy S - el date are
necessary and desirable at an early stage. In fuzzy control applications, Ih.e (,'b.\cr:» L' | Zil,a m
usually crisp (though they may be corrupted by nqse). A natur:lil gnd >1mpli {uzaﬁ.u-xm:n
approach is tc convert a crisp value x into a fuzzy smgleton.ﬂl within the speuheq universe
of discourse. Thatis. the membership function of 4. p, (x) | is equal to | at the peint ;.. and
zero at other places. In this case, for a specific value x; (1) at time 1, ?it 1s mapped to the fuz;_v
set T, with degree by, (1)) and to the fuzzy set T2 with degree K (x; (1)), and so on. This
approach is widely used in FLC applications because it greatly simplifies the fuzzy reason-
ing process. In a more complex case where observed data are disturbed by random noise, a
fuzzifier should convert the probabilistic data into fuzzy numbers, that is, fuzzy ( possibility)
data. For this. Dubois and Prade [1985a] defined  bi jective transformation which transforms
aprobability measure into a possibility measure by using the concept of the degree of neces-
sity. In large-scale systems, some observations relating to the behavior of such svstems are
precise, others are measurable only in a statistical sense, and some, referred to as “hybrids”
reqq_ire both probabilistic and possibilistic modes of characterization.

7A1.3 Fuzzy Rule Base

Fuzzy cgptrol rules are characterized by a collection of fuzzy IF-THEN rules in which the
preconditions and consequents involye linguistic variables, This collection of fuzzy control

rules (or fuzzy control statements) characterizes the simple input-output relation of the sys-

‘em. The general form of the fuzzy control rules in the case of multj-i ;
multi- t—single-output
systems (MISO) is: I-input-single-outp

R";IinsAi,..., AND y s B, THEN ; = o i=12.. n (7.4)

where x,..., y, and z are linguistic variables fepresenting the process state variables and the

control vari; ively, and A, - ang Lo
] rol variable, respe§t1\el}, aqd A B,,' and C. are the linguistic values of the linguistic

vanables x...., y. and z in the universes of discourse U, v ang W, respectively. A variant

of this type is that the consequent is represented as a function of the process state variables
X,....y, that is

R IFxisd,..., AND yis B, THEN =f(x..

where £(x,..., )-) ;s a function of the PrOCess state varjableg X,...,y. The fuzzy control rules in
Eqgs. (7.4) and (7.5) evaluate the process state (ie., State, state’er'r’or. state enoiimeoral, and s0
on) at time ¢ and compute and decide the control actions g 5 fun’c[jon of the stat:: variables
(x,...,y). It is worthwhile to point out that both fuzzy control rules have linguistic-values.as

Inputs and cither Iingui's‘ti”c. mlue_; [fp‘.s in Eq. (7'1’>] Or Crisp values [asin Eq. (7.5)] as outputs.

- )9)’ (75)

D —

\/.1.4 Inference Engine

Lhis is the kemnel of the FLC in modeling human decision making within the conceptual
framework of fuzzy logic and approximate Tasoning. A Mentioned in Section 6.3.1, the
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generalized modus ponens (forward data-driven inference) in Eq. (6.27) plays an especiall

important role in this context. For application to fuzzy reasoning in FLCs, the generalized_%

modus ponens in Eq. (6.27) can be rewritien as follows:
Premise 1 IFxisA THEN yis B
Premise 2: xisA’ (7.6)25
Conclusion:  yisB".

where A, 4", B. and B' are fuzzy predicates (fuzzy sets or relations) in the universal sets U
U.Voand ¥, respectivery. in general, a fuzzy control rule [e.g., premise 1 1n Eg. (7.6)] 15
fuzzy relation which s expressed as a fuzzy implication R = A — B. According 1o the com-
positional rule of inference in Eq. (6.25), conclusion B” in Eq. (7.6) can be obtained by tak-
ing the composition of fuzzy set A’ and the fuzzy relation (here the fuzzy relation is a fuzzy
implication) A — B:

B=A"cR=A"0o(A—DB). (17

In addition to the definitions of fuzzy composition and implication given in Egs. (6.26) and
(6.28), there are four types of compositional operators that can be used in the compositional
rule of inference. These correspond to the four operations associated with the r-norms: ~

+ Max-min operation [Zadeh, 1973],

» Max product operation [Kaufmann, 1975],

+ Max bounded product (max — ) operation [Mizumoto, 1981],
¢ Max drastic prbduct (max — /) operation [Mizumoto, 1981],

where bounded product and drastic product operations are stated in Egs. (2.58) and (2.59),
respectively. In FLC applications, max-min and max product compositional operators are
the most commonly and frequently used because of their computational simplicity and effi-

ciency. Let max — # represent any one of the above four composition operations. Then Eg

(7.7) becomes

B =A"«R=A"«x(A—B),
- . (78)
g ()= sup{ iy ()57 By (0, VD),

where * denotes the t-norm operations such as min, product, bounded product, and drasti¢
product operations. As for the fuzzy implication A — B, there are nearly 40 distinct fuzzy
implication functions described in the existing literature. Table 7.1 provides a list of severd
fuzzy implication rules commonly used in a FLC [Mizumoto, 1988].

It is observed that the fuzzy implication rules defined in Table 7.1 are generated
from the fuzzy conjunction, fuzzy disjunction, or fuzzy implication by employing various
£-DOrms or t-Conorms. The first four fuzzy implications, R, Rp, Ry, and Rp,are all -
norms. For example, Mamdani’s min fuzzy implication R is obtained if the intersectios
operator is used in the fuzzy conjunction. Larsen’s product fuzzy implication R, I
obtained if the algebraic product is used in the fuzzy conjunction. Ry, and Ry, &
obtained if the bounded product and the drastic product are used in the fuzzy conjunction,

!
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ous Fuzzy Implication Rules

1 Vari
TABLE 1. — -
i fF Implication Implication cormulas
Rule of Fuzzy Implica

mdani —b=aAb
g - min operation [Mamdani] a ; )
N —h=qa’
R product operation [Larsen] a -
—p=0V(ato—1)
o - bounded product a |
AR b

a,

b.
0.

a=|

a b

g B =
¢ - drastic product

v - snthmenc rule (Zadeh] a—b=1A{1-atb)

g_: max-min rule [Zadeh] a—b=(aab)v(l —a)

B

e

Fuzzy ]mf’““"m““: u/""”_(u'_i).ﬁ,,,

/—”-" 1
= 1, (Il) ARy (v)

= Ly (H) Ky (v)
=0V [, () Fpg(v) = 1]

o (u), palvr=1
=4 pp(v), B (=1
J 0. P lH0 pp v ]
=IA(l = pa )+ uz00)) v ch

i
\ A
= (14 (WA pg(v)) v(l— 4 (u)) ‘/

] a<bh 1, FLA(”)SP-B(V)
R - standard sequence g+ = 0 A5 0, L (> i )
R.: Beolean fuzzy implication a—b=(-aVvb = (1= g (W))V pp(v) \/
1 a<bh 1, palw)=pg(v)
R : Godehan logic a " . i 0> )
1 asbh 1, (1) = pg(v)
. o ] . i . _’b - ] — |
R,: Goguen’s fuzzy implication a b/a, i " (v)/ o, 0 s 0

respectively. Furthermore, we note that Zadeh’
using the bounded sum operator, and Zadeh'’s

Example 7.1 .
This example illustrates the various fuzz
setA’ is a singleton at iy; that s, Fy (g
setsin Uand V respectively, as in Fig.
the fuzzy implications A — B in Tab
a=0.3 (dotted line) and q = 0.7 (soli
third column of Table 7.1 by setting

le 7.1 is

Koy () =

Sec. 71

Y implications in Tab
)=1and Mo (1) = O for i
7.3. Then the consequent B

d line). Figure 7.4 is obtaine

Basic Structure end Operation of Fuzzy Logic Control Systems

s arithmetic rule R, follows Eq. (2.78) by

e 7.1 graphically. Assume fuzzy
#u,. Let 4 and B be fuzzy
of Eq. (7.6)atA’ =y, unc-icr
4, where w, (1) = a with
d from the equations in the

depicted in Fig. 7

Py (o) in those equations.

Figure 7.3 Fuzzy sets A and B in
Example 7.1,
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: 0% Z Figure 7.7 Diagrammatic representation of

0 .
X Y min )
' fuzzy reasoning of the second type.

4. Fuzzy reasoning of the third type—The consequent of a rule is a function of input lin-
guistic variables: In this mode of reasoning, the ith fuzzy control rule s of the form
of Eq. (7.5). For simplicity, assume that we have two fuzzy control rules as follows:

R': IFxisA, ANDyis B,, THEN zis f, (x,)),
R%: IFxis Ay AND yis B,, THEN zis f, (x, ).

The inferred values of the control action from the first and second rules are a f; (x;, y,)
and o, f, (%, ) , Tespectively. Consequently, a crisp control action is given by

o, fy O Yg) + g fy (g 3’0) (7.29)

=

This method was proposéd by Takagi and Sugeno [1983] and has been applied to
guide a model car smoothly along a crank-shaped track [Sugeno and Nishida, 1985]
and to park a model car in a garage [Sugeno and Murakami, 1985].

/’1 5 Defuzzifier

Defuzzification is a mapping from a space of fuzzy control actions defined over an output
universe of discourse into a space of nonfuzzy (crisp) control actions. This process is nec-
essary because in many practical applications crisp control action is required to actuate the
control. Thus, a defuzzifier is necessary when fuzzy reasoning of the first type [Egs. (7.24)
and (7.26)] is used.

A defuzzification strategy is aimed at producing a nonfuzzy control action that best
represents the possibility distribution of an inferred fuzzy control action. Unfortunately,
there is no systematic procedure for choosing a defuzzification strategy. Two commonly
used methods of defuzzification are the center of area (COA) method and the mean of max-
imum (MOM) method.

The widely used COA strategy generates the cener of gravity of the possibility dis
tribution of a control action. In the case of a discrete ufiiverse, this method ylelds
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n N\ -
. Zj=IP“C(“j)LJ

- , (7
“coa ZJ:H“LC (Zj—)

where 1 is the number of quantization levels of the output, 3 is the amount o.t control oy
put at the quantization level J, and pe (zj) represents its membership value in the output

fuzzy set C. If the universe of discourse is continuous. then the COA strategy generates i
output control action of

Jonc(2)zd:

= — (7.
J- Fc (2)d:
The MOM strategy generates a control action that re
local control actions whose membership functions reach the
Crete universe, the controf actiop may be expressed as

MCoA

(0

I

presents the mean valye of 4]
maximum. In the case of 3 djs.

where 3 is the Suppert value at whj
e (5) and mis the number of such Support values.

Of these two commonly yseq defuzzification Strategies, the COA strategy has been
shown to yield superior results [Braae angd Rutherford, 1978]. Furthermore, the MOM strat-

°8Y yields a better transient performance, whije the COA strategy yields a better steady-
state performance (lower mean Square error) [Lee, 1990,

Yager and Filey [Yager,

£a _ aking the expected value
A discrete univerge, ghe control action is expressed as
n

J=1

where p, is the BADD defined as
_ k()
pi= ST e (7.34)
= l‘l‘C (Z)

and is parameterized by a parameter o & (0, 0] .
feremdefuzziﬁcation strategies: (1) If ¢ = 1, th

enthe defuzzificagjop strategy is reduced 10
the COA method. (2) If ¢ — %, then the defuzzificagi, strategy is reduced to the MOM
method., (3) If @ = 0, then P;=1/n; where i the cardinality obf z

One immediate implication of the introductjop, OF BADD is that e can provide an
adaptive leaming scheme to obtain the Optimal defuzzificariop, parameter «. The value of @
¢an be interpreted as some kind of measure of confidence jp 1. controller rule base output:
We see thata = 0 corresponds to no confidence, anq the informatjop supplied by the rul¢
base is completely discounted. If a = 1, we take the informﬂlion supplied by the controllet
at face value. This can be interpreted as normal .COnﬂdence. Ifoa =00 then we place ex-
tremely high confidence in the information supplied by the contro]er,
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Figure 7.8 Fuzzy reasoning process in Example 7.3.

Using the MOM defuzzification strategy. three quantized values reach their maximem
merpberships in the combined membership function (i.e., 3, 4, and 5 with membership values
of ). Therefore, '

o= +4+5/3=40.

1/ ' DESIGN METHODOLOGY OF FUZZY CONTROL SYSTEMS

Erom the previous discussions, we can see that the principal elements of designing a FLC

}nclude (1) defining input and output variables, (2) deciding on the fuzzy partition of the
input and output spaces and choosing the membership functions for the input and output
hnguisFiC variables, (3) deciding on the types and the derivation of fuzzy control uIcS:
(4) designing the inference mechanism, which includes choosing a fuzzy implication and 3
compositional operator, and the interpretation of sentence connectives AND and ALSO:
and (5) choosing a defuzzification operator.

. The first two design principles indicate that, in the design of a FLC, one must ide™”
tify the main process state variables and control variables and determine a term set that is &
the nght level of granularity for describing the values of each (linguistic) variable. FOI
examPle, a three-term set such as {Small, Medium, Large } may not bgsmisfaclory’ in soIme
domains, and the use of a finer five-term set such aé {V}EJRY Small, Small, Medium. L:lfi-i
f'md VERY Large) may be required instead. Hence, the number of fuzzy partiticns of the
Input-output spaces should be large enough 1o provide an adequate approximation and ,’\ve[
be small enough to save memory space. This number has an essential effect on hoY ﬁnc??
control can be obtained. Moreover, different types of fuzzy membership fu ?5
e'xamp!e, monotonic, triangular, trapezoidal, and bell-shaped functions, may be used for,t()
hng‘uistic values of each linguistic variable. There are two methods for making [hi:
choices. First, we can use experience and engineering (domain) knowledge 10 select {[5
possible and proper input-output variables andpthcn us;a heuristic cut-and-try Pfocedm,ii
find a proper fuzzy partition and a trial-and-error approach to find suitable members0?

pctions,
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tuncm?ns.Although this methlod is rather time-consuming and nontrivial, it has been widely &
envlployed an'd has been used in rany successful industrial applications. A rule of thumb QE
this method IS concerned with the € completeness of input-output membership functions: i
that 1s, Ihe‘umon of the supports of the fuzzy sets in aterm set should cover the related unjj
verse of discourse in relation to some level set €. In general, we choose the level € at the
crossover point as shown in Fig. 7.2, implying that a dominant rule always exists and jg
associated with a degree of belief greater than 0.3, In the extreme case. two dominant ruleg
are activated with an equal belief of 0.5. Second. we can use learning or self-organizatiog
techniques. The idea is 10 decide on and adjust the fuzzy partitions and membership func.
tions and to select important, useful input-output variables from a greup of candidates aut.
matically and systematically, and/or dynamically through leamning techmques. In thi
methodology, the use of neural network-based learning techniques and genetic learning
algorithms has proved to be a very promising approach. They will be discussed further iy
detail in Part I1I of this book.

For the fourth and fifth design principles of a FLC, there is no systematic methodol-
ogy for realizing the design of an inference engine and the choice of a defuzzification oper-
ator. Most practitioners use empirical studies and results to provide guidelines for these
choices.

The third design principle in determining fuzzy control rules depends heavily on the
nature of the controlled plant. In general, there are four methods for the derivation of fuzzy
control rules [Sugeno, 1985a; Lee, 1990], and these methods are not mutually exclusive. A

combination of them may be necessary to construct an effective method for the derivation
of fuzzy control rules.

1. Expert experience and control engineering knowledge: Fuzzy control rules are
designed by referring to a human operator’s and/or a control en gineer’s knowledge.
More specifically, we can ask a human expert to express his or her knowledge in
terms of fuzzy implications, that is, to express this know-how in fuzzy IF-THEN
rules. We can also ask a control engineer to list 2 number of protocols based on his or
her knowledge about the process to be controlled. Finally, 2 heuristic cut-and-try pro-
cedure is used to fine-tune the fuzzy control rules. This method is the least structured
of the four methods, and yet it is the most widely used. A typical example is the oper-
ating manual for a cement kiln [King and Karonis, 1988; Zimmermann. 1991]. The
kiln production process is complex and nonlinear, it contains time lags and interrela-
tionships, and the kiln's response to control inputs depends on the prevailing kiln con-
ditions. These factors are certainly the reason why a fuzzy controller was designed
and used. The aim is to automate the routine control strategy of an experienced kilo
operator. The strategies are based on detailed studies of the process operator experi-
ences which include a qualitative model of influence of the control variables on the
measured variables, for example, “If the air flow is increased, then the temperature in
the smoke chamber will increase, while the kiln drive load and the oxygen percentage
will decrease.” From this kind of verbal statement, we can derive the following rule:

I drive load gradient is Normal
AND drive load is SLIGHTLY High

AND smoke chamber temperature is Low,

-
(5]

()
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THEN change oxygen percentase is Positive

AND change airflow s Positive.

More details on this example can be found in [Holmblad and Ostergaard. 1932].
The disadvantages of this mode of derivaticn of fuzzy control rules are that (1) an

operator may not be Jble to verbalize his or her knowledge, and (ii) it may be difficult

e down control rules because the controlled process 1s

for a control engineer o Wi

too complex.
3 \odcling an operator’s control actions: Ye can model an operator’s skilled actions

avior in terms of fuzzy implications using the input-output data cen-
hen we can use the obtained “input-output model”

hind this mode of derivation is that 1t 1S easier to
ocess since the input variables of the

hat kind of information he uses in his

or control beh
nected with his control actions. i
as a fuzzy controller. The idea be
model an operator’s actions than to model a pr

model are likely found by asking the operator W

or by watching these actions.
e is Sugeno’s fuzzy car [Sugeno and Murakami,

has successfully followed a crank-
process involves a skilled

contrel actions
A typical and interesting exampl

1985: Sugeno and Nishida. 1985]. His model car
shaped track and parked itself in a garage. The training
del car under different driving conditions. The con-

operator guiding the fuzzy mo
trol policy incorporated 1S represented by a set of state-evaluation fuzzy control

rules:
R TFxis A, AND ... ANDyis B, THEN 2= d+dx+-+ay (135
, and y are linguistic variables representing the distance and orientation in
aries of the track, Zis the next steering angle decided by the ith
., d, are the parameters entering in the identification process of
a skilled driver’s actions. This identification is made by optimizing a least squares
performance index via a weighted linear regression method (a weighted recursive
least squares algorithm) [Tong, 1978a; Takagi and Sugeno, 1983, 1985; Sugeno and
Kang, 1986, 1988]. In addition to modeling an operator’s actions, this method is also
used to model (identify) ontrolled processes mccording to their put-output data,
Which involves parameter Tearning as well as structure Tearning [ Sugeno and lanaka,
1991]. These are called linguistic cor trol rule approaches to fuzzy modeling or fuzzy
identification. The Takagi and Sugeno fuzzy model has the following form:

where x,..
relation to the bou_nd

control rule, and aq,..

L': TFx(k) jsAjAND...ANDx(k—nH)isA;

AND u (k) is B, AND -+ AND u(k—m+1)is B, .
. . . (7.

THENx'(k+1)=a6+a'lx(k)+-‘-+a:lx(k~n+])

+b§u(k)+-~-+b"mu(k—m+1),

le, I (k+ 1)isthe output of rule Lf, and u () is the input

model can be obtained by fuzzy reasoning of the
a FLC based on the derived fuzzy model is
ative of the third mode of design

where x () is the state variab
variable. The output of the fuzzy
third type (Eg. (7.29)]. The design of
called a “model-based” FLC design and is represent
methodology described below.
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3 Based on a fuzzy model or behavior analysis of a controlled process: In this mod
fuzzy control rules are derived or justified based on either the fuzzy model or the

Example 7.4

1€2

1y
P
§

pehawor analysis of a controlled process. If we have a fuzzy model of the process or
if we know some useful properties of the process, we can design cr generate a set of
fuzzy control rules for attaining optimal performance. BY fuzzy modeling, We meap
representation of the dynamic characteristics of the process by a set of fuzzy impli-
cations with inputs, state variables, and cutputs. There are two methods for designing
fuzzy control rules in this mode. o
(a) Heuristic method: We set a fuzzy contrel rule to compensate for an undesirable

system behavior by considering the control objective. This is done by analvzing
the behavior of a controlled process. Such behavier analysis techniques 'mclud;
the phase-plane approach [King and Mamdani, 1975]. the linguistic phase-plane
approach [Braae and Rutherford, 1979a), the pole placement approach [Braz
and Rutherford, 1979b], a fuzzy Proportional-Integral-Derivative (PID) control

| 1988: Abdelnour et al., 1991], and other approaches

approach [Peng et al,
[Baaklini and Mamdani, 1975; Mamdani and Assilian, 1975). These techniques

usually have their counterparts in conventional control theory.

(b) Optimal control method: This is basically a deterministic method which can sys-
tematically determine the linguistic structure and/or parameters of fuzzy contro|
rules that satisfy the control objectives and constraints (of minimizing a perfor
mance index) based on the fuzzy model of a process. Such systematic methods

are usually studied by means of fuzzy relational equations and linguistic control

rules for fuzzy modeling which are comprised of two phases, namely, structure
The linguistic control rule approaches

identification and parameter estimation.
were mentioned above. For the fuzzy relational equation approach, structure

identification requires determination of the system order and time delays of dis-
crete-time fuzzy models, while parameter estimation reduces to determination of
the overall fuzzy relation matrix from the input-output data of the system [Czo-
gala and Pedrycz, 1981, 1982; Pedrycz, 1981, 1984, 1989; Togai and Wang,
1985; Xu and Zailu, 1987; Sugeno and Tanaka, 1991]. Let us use an exampleto
illustrate the fuzzy relational equation approach to the fuzzy controller design.

=
[Togai and Wang, 1985] Consider the fuzzy dynamical system in Fig. 7.9, where X and Yar
fuzzy subsets on U and V, respectively, R 1s a temary relation on VX U X V,and Dis a delay
unit. The fuzzy relation R represents the transition relation for the closed-loop system witha
first-order delay unit D. Thus, we have

,,=(4NX) o R=X o1 R),

1.1
where the second equality holds for the min operation (N) and the max-min composition

(o). Then it is possible to derive the input X,, which drives the state from ¥, 10 ¥4, DY solving
the fuzzy relationa) equation in Eq. (7.37) (see Sect. 3.4) as shown below:

X,= (o R) 2, 039

where 2 indicates the a operator and is defined in Eq. (3.52).

Based on learning (or self-organizing). Many FLCs have been built to emulate
human decision-making behavior Currently, many research efforts are focused on

Fuzzy Logic Control Systems Chep.]
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| include‘s aspects of approximately achieving the previous goal. that is. “IF g, ls!
approximately achieved AND x; is 4, THEN zis C.” We can sce that the imeraéti(l)ns
bfit.\veen the goals g, and g, _, are handled by forming rules that include more precon.
ditions o‘n the left-hand side. For example, assume that we have acquired a set of ruleg
for keeping a pole vertical. In deriving the second rule set R, for moving (0 a pre.
specified location. a precondition such as the pole is almost balanced can be addeq,
The linguistic hedge, concentration [Eq. (6.11]. can be used here to systematically
obtain a more focused membership function for the parameters representing the
achievement of nrevious goals.

We have discussed general methodolegies for the design of FLCs with four modes
of deriving fuzzy control rules and two hierarchical design approaches. These desigy
approaches and the derivation of fuzzy control rules are used in many industrial and cor-
sumer product applications. A few of these applications will be discussed in Sect. 7.4, and
further applications of fuzzy sets and fuzzy logic will be considered in Chap. 8.

WABILITY ANALYSIS OF FUZZY CONTROL SYSTEMS

One of the most important concepts concerning the properties of control systems is stabil-
ity. This is also true for fuzzy control systems. As fuzzy control has been successfully
applied to many practical industrial applications, stability analysis of fuzzy control systems
is gaining much attention. Of various existing methodologies for stability analysis of fuzzy
systems [Mamdani, 1976; Kickert and Mamdani, 1978; Tong, 1978b, 1980; Braae and
Rutherford, 1979a,b; Kania et al., 1980; Pedrycz, 1981; Kiszka et al., 1985; Chen, 1989,
Yamashita, 1991; Langari and Tomizuka 1990b, 1991], the one proposed by Tanakaet al. is
introduced in this section. ' _

Tanaka and Sugeno [1992] and Tanaka and Sano [1992) used Lyapunov’s direct
method to perform stability analysis of fuzzy control systems where the fuzzy rules arein
the form of Egs. (7.35) and (7.36). They used Takagi and Sugeno's fuzzy control rule (Eq.
(7.35)] and fuzzy model [Eq. (7.36)] and assumed that the membership functions of the
fuzzy sets in these rules (e.8., 4. B AL, BL) are continuous piecexise polynomial functions
(e.g., triangular type or trapezoidal type). Let us consider the following fuzzy system with

Zero 1nput;

Li: IFx (k) is AL AND -+ ANDx(k—n+1) is Al

, , . (740)
THEN X (k+ 1) =ax &) + -+ ajlx(k—- n+ 1),
wherei=1,2,.... [ The consequent of Eq. (7.40) can be written in matrix form as
X (k+ 1) =A,x(0), (7.4)
wherex () =[x (k),x (k= 1),..,.x(k—n+1) ]T and
Fuonu | anie Contrnl Quetame  Chan
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~a,I {y ar-rdl a,
1 0 0 0
A=(0 I - 0 0. (742)
Lo 0 - ] 0

The output ¢ f the fuzzy system is inferred by fuzzv reasoning of the third tvpe [Eq. (7.29)]

as follows:

I
Z[: o A x (k)
x{k+ 1= 7 . (7.43)
D=1

where o is the firing strength, which is defined as [the min operator in Eq. (7.23) is replaced
by the product operation]

o= i () i (g b+ INBERE iy (xogk—n+1)), (7.44)
where x, (+) denotes the crisp value of x (-) at a specific instance. With this formulation, we
have the following theorems of stability analysis. The first one is the well-known Lya-

punov’s stability theorem [Kuo, 1980]. .
i
7
Theorem 7.4
Consider a discrete system

x(k+ 1) =F(x(), (7.45)

where x (k) € R", f (x (k) ) is an n X 1 function vector with the property that f(0) = 0 for all £
Suppose that there exists a scalar function V (x (k) ) continuous in X (k) such that

(a) V(0)=0,

(b) V(x(k))>0forx(k)#0,

(c) V(x (k) approaches infinity as |}x (k)| — o,
@) AV(x(kR))<0forx(k)#0.

Then the equilibrium state x (k) = 0 for all  is asymptotically stable in the large, and V(x(k))
is a Lyapunov function.

Theorem 7.5
If P is a positive-definite matrix such that

ATPA-P<0 and B'PB-P<O, (1.46)
where A, B, P € ™", then
ATPB + B"PA —2P < 0. (147
Proof: We have
ATPB +BTPA - 2P =-(A-B) P(4 —B)+ ATPA + B'PB - 2P
=-(A—-B)Y P(A-B)+ATPA—~P+B"PB-P.

Sec.7.3  Stability Analysis of Fuzzy Centrel Systems 167
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Coefficient of x(k-1)
E|
Rule 3 3
03 5
Rule |
0.1
01 0.3
ocf ciem of x(k) Coefficient of x(k)
) (5

Figare 7.14  Parameter region (PR) representations of the fuzzy systems in Example 7.7.
(2) PR of fuzzy system 1. (b) PR of fuzzy system 2.

We notice a difference between the PR of fuzzy system 1 and that of fuzzy system?,
In the former [Fig. 7.14(a)), each plotted point correspends to each edge of the paramele
region. Conversely, in the latter [Fig. 7.14(b)), the parameter region constructed using the
plotted points of rules 1-3 includes the plotted points of rules 4 and 5. This observatiog
implies that rules 1-3 of fuzzy system 1 or fuzzy system 2 are edges of the PR; they are said
to be edge rules. The consequent matrices A, A,, and A, in edge rules are said to be edg
matrices. A fuzzy system that consists only of edge rules is said to be a minimum represen.
tation. Obviously, fuzzy system 1 in Exampie 7.7 is a minimum representation, while fuzzy
system 2 is not a minimum representation. The following theorem is important for check-
ing stability in the case of nonminimum representation.
Theorem 7.8

[Tenaka and Sano, 1993). Assume that P is a positive-definite matrix. If ATPA. — P < 0 fo
i=1,2,..1, then A" PA* —~P< 0, where A¥ is a nonedge matrix such that

o I
A'=> 54,  where Y s;=1lands=0, (758
i=1 i=1

_The above theorem indicates that the stability of a fuzzy system can be checked by apply-
ing the Tanaka-Sugeno theorem (Theorem 7.6) to a minimum representation of the fuzzy
system. For example, in fuzzy system 2 in Example 7.7, A, = 0.54, + 0.5, and &, = |
0.54, +0.25A, + 0.25A,. Therefore, 2 minimum representation of fuzzy system 2is

equiva}ent 10 fuzzy system 1. Hence, it is found from Theorem 7.8 that fuzzy system 2is|
stable if fuzzy system 1 is stable,

PPLICATIONS OF Fyzzy CONTROLLERS

Over the past decade, we have witnessed 2 very significant increase in the number of appli

cations of fuzzy logic-based techniques o various commercial and industrial products ard
systems. In many applications, especially in controlling nonlinear, time-varying, ill-defined
Systems and in managing complex systems with multiple independent decision-making

172 Fuzzy Logic Control Systems ~ Chap.
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processes, FL.C-based systems have proved to be superior in performance when compared to
conventional control systems.

Notable applications of FLC include a steam engine [Mamdani and Assilian, 1975:

Ray and Majumder, 1985); a warm water process [Kickert and Van Nauta Lembke, 1976];
heat exchange [Ostergaard, 1977]; activated sludge wastewater treatment [Tong et al.,
1930; Troh et al.. 1987; Yu et al,, 1990]; traffic junction control (Pappis and Mamdan,
1977]; a cement kin [Larsen, 1980: Umbers and King, 1980]; aircraft tlight control
[Larkin, 1985; Chaudhary, 1990; Chiu et al., 1991): autonomous orbital operations [Lea
and Jani. 1992]: a wrning process [Sakai. 1985): robot control [Uragamietal.. 1976: Scharf
and Mandic. 1983: Tanscheit and Scharf. 1988: Ciliz et al., 1987; Isik, 1957 Palin 19897
model car parking and turning [Sugeno and Murakami, 1984, 1985 Sugeno and Nishida,
1985; Sugeno et al.,, 1989): automobile speed control [Murakami, 1983: Murakamj and
Maeda, 1985]); a water purification process [Yagishita et al., 1985]; elevator control
[Fujitec, 1988]: automobile transmission and braking control [Kasaj and Morimoto, 1988):
power systems and nuclear reactor control [Bernard, 1988: Kinoshita et al.. 1988]: arc
welding [Murakami et al., 1989; Langar and Tomizuka, 1990a]; refuswcineration [Ono
et al.. 1989]: process control [Efstathiou, 1987); adaptive control [Graham and Newell.
1989]: automatic tdning [Ollero and Garcia-Cerezo, 1989); control of a liquid level rig
(Graham and Newell, 1988]: gasoline refinery catalytic reformer control [Bare et al., 1990];
a ping-pong game [Hirota et al., 1989]; biological processes [Czogala and Rawlik, 1989];
knowledge structure. [Van Der Rhee et al., 1990]; a model helicopter [Sugeno, 1990); a
walking machine [DeYoung et al., 1992]; a rigid disk drive [Yoshida and Wakabayashi,
1992]; highway incident detection [Hsiao et al., 1993]; gas cooling plapt control [Tcbi et
al., 1989]; control theory [Tang and Mulholland, 1987; Berenji et al., 1989; Li and Lan,
1989]; fuzzy hardware devices [Togai and Watanabe, 1986; Togai and Chiu, 1987; Watan-
abe and Dettloff, 1988; Yamakawa and Miki, 1986; Yamakawa and Sasaki, 1987:
Yamakawa, 1988a,b, 1989; Yamakawa and Kabuo, 1988; Hirota and Ozawa, 1988, 1989];
and fuzzy computers [Yamakawa, 1987).

Among these applications, the cement kil control system was the first successful
industrial application of a FLC. In contrast to previous analog fuzzy logic controllers which
were designed based on a continuous state-space model, a discrete-event fuzzy controller
was intended for airport control [Clymer et al., 1992]. Fuzzy control has also been success-
fully applied to automatic train operation systems and automatic container crane operation
systems [Yasunobu and Miyamoto, 1983; Yasunobu and Hasegawa, 1986, 1987: Yasunobu
etal.. 1987). Fuzzy logic control systems have also found application in household appli-
ances such as air conditioners (Mitsubishi); washing machines (Matsushita, Hitachi); video
fecorders (Sanyo. Matsushita); television autocontrast and brightness control cameras
(Canon), autofocusing and jtter control [Shingu and Nishimori, 1989; Egusa et al., 1992);
vacuum cleaners (Matsushita); microwave ovens (Toshiba); palmtop computers (Sony);
and many others. In the remainder of this section, the application of fuzzy logic in camera
tracking control is discussed in more detail as an illustration of fuzzy control.

. Aninteresting application of fuzzy control is the camera tracking control system at
‘the Software Technology Laboratory, NASA/Johnson Space Center, used to investigate
fuzzy logic approaches in autonomous orbital operations [Lea and Jani, 1992). The camera
tracking control system utilizes the tracked object’s pixel position on the image as input and

Sec. 7.4 Applications of Fuzzy Centrollers 173
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fontrols the gimbal drives to keep the object in the field of view (FOV) of the camera g
chown inFig. 7.15(a). Thus, tracking an object means aligning the pointing axis of a can
/ ora along the object’s line of sight (LOS). The LOS vector is estimated from the senso,;
measurements. &
/ In this camera tracking control system, the monitoring camera is mounted on the py
and tilt gimbal drives, which can rotate the camera or, equivalently. the pointing axis of the
camera within a certain range. The camera frame (viewing plane) consists of three axeg
vertical, horizontal, and pointing vectors. This plane is a Cartesian coordinate plane f
170 X 170 pixels with the origin at the upper left comer as shown in Fig. 7.13(0). Wheng
image is received. it is processed to determine the location of the object in the Camer
frame. UsW&te image processing technique, the centroid of the 1mage 15 com.
puted and used as the current location of the object in the viewing plane.
As shown in Fig. 7.15(b), the inputs to a fuzzy logic-based tracking controller ar

the LOS vector and the range of the object (the distance of the object from the camera),
and the outputs are the command pan and tilt rates. The LOS vector is expressed In tem
of pixel position (x.y) in the camera’s FOV. The range of the object is received from the
laser range finder as a measurement. With these three inputs, the task of the FLC is
determine the proper pan and tilt rates for the gimbal drives so that the pointing axis of the
camera is along the LOS vector of the object and the image location is at the center of the
viewing plane [1.e., at (85, 84)]. In the camera’s FOV, tilt upward is negative and pan right
is positive.

Membership functions o
tions) are shown in Fig. 7.16(a). M

B SRR

f the input variables (1.e., range, horizontal, and vertical posi-
embership functions of the scale-factor and the outpu
variabies (i.., pan rate and tilt rate) are shown in Fig. 7.16(b). The scale-factor parameter s
used as an intermediate step to indicate the degree that a control action should propose to
reflect the distance of the tracked object from the camera. The basic concept is that the
movement of the object in the FOV caused by the movement of the camera is greater when
the object is closer to the camera than when it is farther from the camera.

Three sets of fuzzy control rules are used [see Table (7.3)). The first set of rules is for
finding the scale factor, which will be used in the next two sets of rules. For example, one
rule in the second rule set may read: “If the horizontal position of the object is to the far lef

170 pixels
0 0 62 170
A 1
170 ! range ;
pixel{ 78] — - @ —— | Fuzzy Logic~ command pan rate
pixel-X position| based >
' —> Tracking command tilt rate
| pixel-Y position| Controller >
170
(a) (b)

Figure 7.15 Camera tracking system. (a) Camera field of view. (b) Input-output of fuzzy
logic-based tracking controller. ‘ )
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(a) RANGE PARAMETER

VFar Far Near VNear Prox
—+
w185 175 10 13 s 100 83 65 50 0010 0
feet
HORIZONTAL POSITION
FL LL Center LR FR
0 20 30 42 5373 85 97 16 128 140 150 170
pixel count
VERTICAL POSITION
FU LU Center LD FD
0 20 30 42 53 73 85 97 116 128 140 150 170
pixel count
b
(b) SCALE_FACTOR
High Medium Low
1 9 7 6 5 © 3 )
PAN AND TILT RATES
FN SN ZR Sp FP
-6.0 -5.0 -3.0 0.0 3.0 5.0 6.0

degrees per second

Figure 7.16  (a) Membership functions for input parameters. VFar, Very far: VNear, Very near; Prex,
Proximity zone; FL, far left: LL, linle left: LR, little right; FR, far right; FU far up: LU. little up: LD.
little down; FD, far down. (b) Membership functions for Scale_Factor and Output parameters for cam-
e.ra tracking system. FN, Fast negalive; SN, slow negative; ZR, zero; FP. fast positive: SP. slow posi-
tive. (Reprinted by permission of the publisher from “Fuzzy Logic in Autonomous Orbital Operations,”
by R.N. Lea and Y, Jani, International Journal of Approximate Reasoning, Vol. 6, No. 2, pages
151-184. Copyright 1992 by Elsevier Science Inc.)

of the center of the viewing plane and the scale factor is low (i.¢., the distance of the object
is far), then set the pan rate fast negative (left).” This example also illustrates application of
the chain rule ule technique of expert systems in FLC design; that is, the firing of a rule causes

the ﬁrmﬂ of another rule. Normally, a FLC has cnly single-layer-rule firing.

<
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Applications
of Fuzzy Theory

of fuzzy set theory to various application domains
such as pattern recognition, optimization, mathematical p;gg;amming_, database !systems,
and human-machine interactions. In some applications, the IHC.OIPOI‘atl.O.n of fuzzybset con-
cepts into existing methodologies or techniques broadens their ﬂembﬂﬁy a1f1d I0 uls.mc‘:ij‘
Examples are worked out to illustrate the improved Perf(?rmance. Because of space limit
tions, this chapter samples only some important applications.

This chapter explores the application

57 PATTERN RECOGNITION

Much of the information that we have to deal with in real life is in the form of complex pat
terns. Pattern recognition involves the search for structure in these complex pat‘ternyf. The
methodologies used for recognition schemes include linear classification, statistical (prod
abilistic) approaches, fuzzy set theory (possibility approaches), perceptrens (geuml net
works), knowledge-based classification based on artificial intelligence techniques, and
many others. Among these, fuzzy set theory has long been considered a suitable framewor'k
for pattern recognition, especially classification procedures, because of the inherent fuzz-
ness involved in the definition of a class or a cluster. Indeed, fuzzy set theory has introduced
several new methods of pattern recognition which have led to successful realizations in var
-~ jous areas including speech recognition, intelligent robots, 1mage processing,‘ ;h:uac&e
recognition, scene analysis, recognition of geometric objects, signal classification, an

medical applications. Major references include (Bezdek, 1981; Kandel, 1982; Pal an
Dutta Majumder, 1986; Pedrycz, 1990a; Bezdek ard Pal, 1992].

180 7 ..
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Asshownin Fig. 8.1, pattem recognition usually consists of three steps: (1) data acqui-
sition, (2) feature selection, and (3) classification. First, the data for classification ere gath-
ered from the environment via a set of sensors. They can be numerical, linguistic, or both.
Afterward, feature selection is usually performed to search for internal structure in the data.
Itis desirable that the dimensions of the feature space be much smaller than those of the data
space so that classification technigues can be efficiently applied. Finallv. classificaticn i
performed via a classifier and 1s actually a transformation between classes and features.

The concept of fuzzy set theory can be introduced into the pattern recognition process
in Fig. 3.1 1o co2e with uncertainty in several different ways. Two of them are in evidence:
(i) fuzziness invelving the feature space, and (i) fuzziness involving the classificaticn
space. Itis understood that most of the information gathered in the recognition processes of
2 human being is of a nonnumerical type. Even if numerical data are available, the process
is worked out by the human mind at a level of nonnumerical labels. This indicates that the
classification is performed not on the basis of a mass of numbers but by elicitation rela-
tionships between the classes and linguistic labels attached to the object for recognition.
These linguistic labels can be represented by fuzzy sets specified in appropriate spaces.
Thus. we may have. for example. a classification rule like, “If an object is heavy and small
and it moves fast, then it belongs to the class w,.” A second important way of introducing
fuzziness is about class assignment (“labeling”) in the classification space. Unlike “hard”
labeling in which an object is classified as belonging to only one class crisply. “fuzzy”
labeling allows an object to be identified as belonging to different classes to different
degrees. That is, the boundaries of the classes are vague. For example, we can say, “If an
object is black and cubic, then it possibly belongs to the class w,.” Obviously, the above two
approaches can be merged into a classification rule like, “If an object is heavy and small and

it moves fast, then it very possibly belongs to the class w."

Physical World Data

Data Acquisition via Sensorsgl

, ~¢——— Pattern Space

!

@;Cnsionality Reduction via Feature Selection

~&—Feature Space

‘ Classification via Classifier
' ~+——Classification Space
Y Figure 8.1 General scheme of pattem
Classified Result recognition.
PiESN
o
4 AV NN W )
Sec.8.1  Fuzzy Pettern Recognition i [ Cimran, \’ A
\ 1182aRy /7
& /r'/:ak‘.“/
\\'\ L7 ‘--j\; '_/_5?
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AZZY MATHEMATICAL PROGRAMMING

In mathematical programming, a real problem is described in terms of a mathematical
model and then an optimal solution is found from the model. Specifically, mathematical

programming is an algorithmic-based approach to solving the following type of optimiza-
tion problem:

Maximize f (x)
subject to g; (x) = 0 fori=1,2,...,m, (831)

150
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where f (x) and g, (x) are, respectively, the objective function (goal) and the constraints of
he problem to be solved. One of the most simple ar.d most commonly used types of math-
ematical programming of Eq. (8.31) is linear programming. It focuses on the following

problem

Maximize f (x) = ¢'x, c.xeNR
(8.32)

32
such that Ax = b. bER" AER™" x =0,

Traditiona’'. tis assumed that each element and operation in Egs. (8.31) and (3.32) is
crisp. that all the constraints are of equal importance, and that the violation of &ny single
constraint renders the solution infeasible. These crisp assumptions and constraints are usu-
ally nonexistent in real-world problems. For example, the stated goal may be to maximize
our gain to about $1 million with the constraint to keep investments to about $10,000 or
less. This problem would be difficult to formulate using crisp mathematical programming.
Fuzzy linear programming, which expresses a kind of ambiguity in terms of fuzzy sets, bet-
ter describes our understanding about the problems that we want to optimize than crisp
mathematical programming. Several types of fuzzy linear programming problems can be
defined by partly relaxing the crisp assumptions in classical linear programming problems
[Zimmermann, 1992]. For example, one might just want to improve one’s present income
considerably instead of maximizing it, a decision maker might accept small violations of
different constraints, or one may only have fuzzy data (fuzzy numbers) instead of preeise
numerical data in this optimization problem. In this section, we shall discuss a simple type

of fuzzy linear programming problem.
The problem to be considered is a type of symmetric fuzzy linear programming prob-

lem in the form of Eq. (8.32), called a linear programming problem with fuzzy inequality
[Zimmermann, 1991, 1992]. The objectives and constraints are given by the following

fuzzy inequalities:
x>z,
AxXb,

x=0,

(8.33)

d < means “essentially smaller than or
aspiration level £ for
and that the con-

where > means “essentially greater than or equal™ an
equal.” In Eq. (8.33), it is assumed that the decision maker can give an

the objective function, which he or she wants to achieve as far as possible.
straints can be slightly violated.

Since Eq. (8.33) is fully symmetric with res
straints, we can consolidate and write

pect to the objective function and con-

x=0,
where
sl -2 .
| ! and d= . (8.35)
0 A b
191
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| M@muamy [1€., the ith row of Eq. (834
o 1ions - 8.34)] s defined by the following memh :

hiE

r

if [Bx). <4

([Bx])=41€1[0,1 ' -
v W [ ] lfdi<[BX]1Sd{,+pi’ =12 m+ ]
y Lyenny, (836)

0 .
' if [Bx],>d, +p,
W 5 da the
| here [.B'\]i is the ith element of the vector By, 1 () s |
inequality, d. is the ith clement of the v X, p; () 15 the membership function of the ;
b haI‘;d _Id & 1l eiem nt of the vector d. and p. is the maximum possible val e it}
gnt-nand 1 ke S it ssible value of
assume 1 be (?I the l[.h mqua}u;, Using the simplest tvpe of membership ﬁm"t‘c e
e it to be linearly increasing over the iolerance interval p, (see Fig. 8.6): S e
[ X D' . .

-,

1 if Bx), <4,
p, ((Bx]) = 1 i— [Bx],-_d‘_/pi ifd <[Bx)<di+p, i=1L2..m+l -
0 if [Bx],>d, + p;
b A
1
4 (Bx]; Figure 8.6 Example of the fuzzy set
& pi—> i «Essentially smaller than or equal.”
Then the maxixfﬁzing decision is the x that satisfies
max min{ j; ([Bx],.)} = maé( min 1- ——p—-—-— _ (839)
x=0 X= i g

ng a new variable \ and performing normalization, we can transform Eg

By introduci
dard linear programming problem:

(8.38) into the following stan
Maximize A

such that Ap; + [Bx]; = d; T p; i=1,2..m%1 (8.39)
x=0, '

which can be solved using conventional approaches.

rructure of its truck fleet
is 1o minimize Cost,
lly fluctuating &

Example 8.5
[Zimmermann, 1976). A company wants to decide on the size and s

Four trucks, Xp» Xy, X3 X Of different sizes are considered. The objective
and the constraints are (o supply all customers who have a streng seasond

mand. At first, the standard linear programming problem is formulated as follows:
Applications of Fuzzy Theory
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Minimize f (x) = 41,400, + 44,3007, + 48,1000, F 49,100x,

such that 0.84x, + 14, + 2165245, = 170
16x, + 16x, + 16x, + 161, 2 1,300
X, 26, x5, x5, %, = 0.

Then. the corresponding fuzzy linear programming problzm is formulated hased on the aspira-

tion level z = 4.2 million and the following parameters:

Low bounds of the tolerance intervals: d; = 3.700.000. d, = 170. d; = 1.300. and .= 6.
Spreads of tclerance intervals: p, = 300.000. p; = 10.p, = 100.and p. = &.

After dividing all the rows in Eq. (8.39) by their respective p; values and rearranging the posi-
tion \. the fuzzy linear programming problem becomes

Maximize A
such that 0.083x, + 0.089x, + 0.096x, + 0.098x, + A =84

0.084x, +0.144x, + 0216x, + 0.240x, — A =17
0.160x, + 0.160x, + 0.160x; + 0.160x, — A =13
0.167x, — A =1

N, X, Xp %30 %4 Z 0.

The soluticns for the above nonfuzzy and fuzzy linear programming problems are

Nonfuzzy Fuzzy
x,=6 x=17414
x,=16.29 1,=0
X = =0

5, =5896 x=66.54
7=3864975  2=3988250

The values for the constraints are

Nonfuzzy Fuzzy
.
1. 170 174.33
2. 1,300 1,343.328
3. 6 17414

________.._________.————

From the solution, we find that “Jeeway' has been provided to all constraints at an additional

cost of 3.2% using fuzzy linear programming.

37 FUZZY DATABASES

d for data integrity and independence, data
be efficiently stored and then processed.
has been very active since the

In real-world applications, because of the nee
- from measurement devices or sensors must
- Because of these requirements; research on database systems
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wmbase systems have tradity a ,
7 y aditionally modeled a precise universe where all values g

t

yonn. However, 1 many real-world situations, especially in fields directly involvig,:
.pCOpIC, sth as human-machine systems, decision making, and natural language pmcelug;
16 there is a great deal of ambiguous data whose values ;ue imprecise wjt}: fu;zy connS&:‘
tations and are sometimes even missing. To use this ambiguovs data constructively, peo ;}
have tried to incorporate fuzzy set theory into standard databases and have bui’]t ﬁfe
databases. <
| There are important benefits in extending data models to incorporate fuzzy ag
imprecise information. F'rst. it provides amore accurate representation of the database un.
verse. Second. it allows for data retrieval hased on similarin of values and thus provides ths
user with considerably mere flexibility in data manipulation. Third, it provides much help
in the coupling of artificial intelligence and databases, which has attracted growing research
and applicability of database systems.

onsisted of network and hierarchical data models,
Is, relational databases, deve)-

interest in improving the functionality
The first generation of databases ¢

Because of the lack of physical independence of these mode
_dominated research efforts in the 1980s and became the second

ng complexity of data modeling requirements, espe-
cially those involving complex objects and large amounts of data in scientific databases, led
to the development of extended relational models, semantic database models, and object-
oriented databases. Among these, object-oriented database Systems mark the genesis of the
third generation. ‘

In general, there are two approaches t0 incorporating fuzzy information into data-
bases. The first is to maintain the standard data model and allows fuzzy queries, and the sec-
ond is to retain the standard database language (e.g., SQL in a relational database) and
extends the data model. First-generation databases, network data models, have not received
much attention in fuzzy database research because of the obstacle caused by the function-
ality condition of network databases indicating hat the same record cannot appear in more
than one set. In this section, we shall introduce some examples of fuzzy relational databases

and fuzzy object-oriented databases [Petry et al., 1992).

oped in the early 1970s
generation of databases. The growl

8.3.1 Fuzzy Relational Databases

In a relational model, the database is a group of relations. The relations aré essentially the
same as the relations of set theory and are expressed in the form of two-dimensional tablzs
The columns of a table (relation) are called artiibutes; thus each row (called a ruple) 12
sequence of attribute values. For each attribute, there Isa prescribed set of values, called the
domain, from which values may be selected. Each element of the domain set has the same
structure, for example, integers, real umbers, of character strings.

Almost all fuzzy databases are extensions of relational models. Approaches 10 the
representation of inexact information in relational data models include simply adding 2
membership altribute value to each relation by substituting similarity for equality in the
application of query (erms and relational calculus and by allowing data values o ¢ posst
bility distributions. More than one of these approaches can be applied at the same time. Let

us consider an example of a similarity-relational model [Petry etal., 1992).
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